Introduction to Electroacoustics and Audio Amplifier Design

W. Marshall Leach, Jr.
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, Georgia 30332-0250 USA
Contents

1 Basic Principles of Sound
 1.1 Sound 1
 1.2 Sources of Sound 2
 1.3 Velocity of Sound 2
 1.4 Frequency of Sound 2
 1.5 Pitch 3
 1.6 Human Speech 5
 1.7 Frequency Bands 5
 1.8 Audio Sub Bands 6
 1.9 Sound Pressure Level 8
 1.10 Equal Loudness Contours 9
 1.11 Loudness Levels 12
 1.12 Audio Test Signals 14
 1.13 Problems 18

2 Fundamentals of Acoustics
 2.1 Basic Equations of Acoustics 21
 2.2 The Acoustic Wave Equation 23
 2.3 The Plane Wave 24
 2.4 Specific Impedance 25
 2.5 Acoustic Energy 25
 2.6 Acoustic Intensity 26
 2.7 Wavelength 27
 2.8 Particle Displacement 28
 2.9 The Simple Spherical Wave 28
 2.10 Volume Velocity 30
 2.11 Power Radiated in a Spherical Wave 32
 2.12 Acoustic Images 33
 2.13 The Directivity Pattern 35
 2.14 The Plane Circular Piston 36
 2.15 The Pattern Beamwidth 39
 2.16 Fresnel Diffraction Effects ... 40
 2.17 Acoustic Reflections 42
 2.18 Problems 46
3 Analogous Circuits of Acoustical Systems

- **3.1 Acoustic Sources** .. 49
- **3.2 Acoustic Impedance** .. 50
- **3.3 The Plane Wave Tube** .. 51
 - 3.3.1 Infinitely Long Tube .. 53
 - 3.3.2 Closed Tube .. 53
 - 3.3.3 Open-Ended Tube ... 54
- **3.4 Acoustic Resistance** ... 56
- **3.5 Acoustic Compliance** ... 59
- **3.6 Acoustic Mass** ... 60
- **3.7 Acoustic Impedance on a Piston in a Baffle** 63
- **3.8 Radiation Impedance on a Piston in a Tube** 67
- **3.9 Radiation Impedance on a Piston in Free Air** 68
- **3.10 Problems** ... 70

4 Analogous Circuits of Mechanical Systems

- **4.1 Mechanical Sources** .. 73
- **4.2 Mass, Compliance, and Resistance** 74
- **4.3 Mechanical Systems** .. 76
- **4.4 Electromagnetic-Mechanical Transducer** 78
- **4.5 Crystal Electrostatic-Mechanical Transducer** 82
- **4.6 Condenser Electrostatic-Mechanical Transducer** 83
- **4.7 Mechano-Acoustic Transducer** 88
- **4.8 Problems** .. 90

5 Microphones

- **5.1 Classifications** .. 93
- **5.2 Modeling Diaphragm Reflections** 94
- **5.3 Diaphragm Back Acoustical Load** 97
- **5.4 Diaphragm Mechanical Parameters** 98
- **5.5 Condenser Microphone** ... 98
- **5.6 Condenser Microphone SPICE Simulation** 102
- **5.7 Condenser Microphone Buffer Amplifiers** 105
- **5.8 Dynamic Microphone** ... 106
- **5.9 Ribbon Microphone** ... 110
- **5.10 Proximity Effect** .. 113
- **5.11 Combination Microphone** 115
- **5.12 Problems** .. 118

6 Moving-Coil Loudspeakers

- **6.1 Construction** ... 119
- **6.2 Analogous Circuits** .. 123
- **6.3 Combination Analogous Circuit** 125
- **6.4 Infinite Baffle Analogous Circuit** 126
- **6.5 Low-Frequency Solution for \(U_D \)** 127
- **6.6 Low-Frequency Bode Plots for \(U_D \)** 129
CONTENTS

6.7 Small-Signal Parameters ... 130
6.8 High-Frequency Solution for U_D 131
6.9 On-Axis Pressure .. 133
6.10 Pressure Transfer Function .. 133
6.11 Bode Plots of On-Axis Pressure 134
6.12 Filter Theory Description of $G(s)$ 136
6.13 Cutoff Frequencies ... 137
6.14 Effect of Non-Zero Generator Resistance 138
6.15 Frequency of Peak Response 139
6.16 Voice-Coil Impedance ... 140
6.17 On-Axis Pressure Sensitivity 142
6.18 Acoustic Power Response .. 144
6.19 Reference Efficiency .. 146
6.20 Diaphragm Displacement Function 146
6.21 Voice-Coil Electrical Power Rating 148
6.22 Displacement Limited Power Rating 148
6.23 SPICE Models .. 149
6.24 Problems ... 154

7 Closed-Box Loudspeaker Systems 159
7.1 Modeling the Box ... 159
7.2 The Analogous Circuits .. 162
7.3 The Volume Velocity Transfer Function 164
7.4 The On-Axis Pressure Transfer Function 165
7.5 Effect of the Box on the System Response 166
7.6 Sensitivity of the Lower Cutoff Frequency 168
7.7 System Design with a Given Driver 169
7.8 System Design From Specifications 171
7.9 A SPICE Simulation Example 173
7.10 Problems ... 176

8 Vented-Box Loudspeaker Systems 179
8.1 Modeling the Enclosure .. 179
8.2 Effect of the Vent .. 181
8.3 The On-Axis Pressure Transfer Function 181
8.4 Voice-Coil Impedance Function 183
8.5 The Magnitude-Squared Function 184
8.6 The B4 Alignment ... 186
8.7 The QB3 Alignments ... 187
8.8 The Chebyshev Alignments ... 187
8.9 Example Pressure Responses 188
8.10 Design with a Given Driver .. 189
8.11 Design from Specifications ... 194
8.12 Vented-Box SPICE Example 195
8.13 Problems ... 199
9 Crossover Networks

- **9.1 Role of Crossover Networks** .. 203
- **9.2 First-Order Networks** .. 204
- **9.3 Second-Order Networks** ... 206
- **9.4 Third-Order Networks** ... 208
- **9.5 L-Pad Design** ... 209
- **9.6 Constant-Voltage and All-Pass Functions** 211
- **9.7 Effect of the Voice-Coil Impedance** 212
- **9.8 Effect of the Driver Phase Response** 213
- **9.9 Active Crossover Networks** 218
 - **9.9.1 Second-Order Filters** .. 218
 - **9.9.2 Third-Order Butterworth Filters** 219
 - **9.9.3 Fourth-Order Filters** ... 220
- **9.10 SPICE Modeling Example** 221
- **9.11 Problems** ... 225

10 Acoustic Horns

- **10.1 The Webster Horn Equation** 229
- **10.2 Salmon’s Family of Horns** 229
- **10.3 Finite Length Horn Size** 232
- **10.4 A Horn Analogous Circuit** 233
- **10.5 SPICE Examples** ... 234
- **10.6 Horn Driving Units** .. 239
- **10.7 Mid-Frequency Range** .. 240
- **10.8 Condition for Maximum P_{AR}** 242
- **10.9 The Horn Efficiency** .. 242
- **10.10 The Low-Frequency Range** 243
- **10.11 The High-Frequency Range** 243
- **10.12 Low-Frequency System Design** 244
 - **10.12.1 Design with a Given Driver** 244
 - **10.12.2 System Design from Specifications** 246
- **10.13 Problems** ... 249

11 Audio Power Amplifiers

- **11.1 Power Specifications** .. 251
- **11.2 Feedback Amplifier Gain** 252
- **11.3 Effect of Feedback on Distortion and Noise** 253
- **11.4 Effect of Feedback on Output Resistance** 254
- **11.5 The Stability Criterion** .. 255
- **11.6 The Single-Pole Amplifier** 258
- **11.7 The Two-Pole Amplifier** 260
- **11.8 The Alternate Stability Criterion** 262
- **11.9 Techniques for Compensating Feedback Amplifiers** 264
 - **11.9.1 Gain Constant Reduction** 267
 - **11.9.2 First Pole Lag Compensation** 268
 - **11.9.3 Second Pole Lead Compensation** 270
CONTENTS

11.9.4 Feedforward Compensation .. 271
11.10 Signal Tracing ... 271
11.11 Power Supply Design ... 275
11.12 Amplifier Circuit Topologies .. 277
 11.12.1 Power Output Stage .. 277
 11.12.2 Voltage Gain Stage ... 281
 11.12.3 Input Stage .. 284
 11.12.4 Completed Amplifier Circuit 286
11.13 Gain-Bandwidth Product ... 288
11.14 Slew Rate ... 290
11.15 Decoupling and Grounding .. 291
11.16 Protection Circuits .. 293
11.17 Power Dissipation .. 299
11.18 Amplifier Measurements .. 299
 11.18.1 Power Rating .. 299
 11.18.2 Voltage Gain ... 300
 11.18.3 Frequency Response ... 300
 11.18.4 Output Resistance and Damping Factor 301
 11.18.5 Slew Rate .. 301
 11.18.6 Signal-to-Noise Ratio 302
 11.18.7 Total Harmonic Distortion 302
 11.18.8 Intermodulation Distortion 304
11.19 Problems ... 306

A References .. 313

B Driver Parameter Measurements .. 315
 B.1 Basic Theory ... 315
 B.2 The Measurement Test Set ... 316
 B.3 Measuring R_E, f_s, Q_{MS}, Q_{ES}, and Q_{TS} 318
 B.4 Measuring V_{AS} ... 319
 B.5 Conversion to Infinite-Baffle Parameters 320
 B.6 Measurement of L_E and R'_E 320
 B.7 Summary Sheet .. 322

C 4th-Order Bandpass Systems ... 323
 C.1 System Description ... 323
 C.2 Output Volume Velocity .. 324
 C.3 On-Axis Pressure .. 326
 C.4 Fourth-Order Band-Pass Functions 326
 C.5 System Parameters ... 327
 C.6 Design Procedure .. 328

D Electroacoustic Glossary of Symbols 331

E The Isobaric Connection ... 335
Preface

This book is an outgrowth of a senior level elective course in audio engineering that I have taught to electrical engineering students at the Georgia Institute of Technology. The first part of the book covers basic acoustics. The emphasis is on that part of acoustics that pertains to the field of audio engineering. Most of the remainder of the book concerns the application of the tools of electroacoustics to the analysis and synthesis of microphones, loudspeakers, crossover networks, and acoustic horns. The book concludes with a chapter that covers the basic theory of audio amplifier design.

Electroacoustics is that part of acoustics that pertains to the modeling of acoustical systems with electrical circuits. Because most acoustical devices have a mechanical part, the modeling of mechanical systems with electrical circuits is a basic part of electroacoustics. Separate chapters in the book are devoted to analogous circuits of mechanical systems and to analogous circuits of acoustical systems. The traditional approach in these circuits has been to use transformers to model the coupling between the electrical, the mechanical, and the acoustical parts. A major departure in this book is the use of controlled sources to model the coupling. An advantage of this approach is that it avoids the need for mobility analogs in the acoustical circuits. In addition, the author has found that students have much less difficulty with the approach. Perhaps this is because the controlled-source circuits are more intuitive than the transformer circuits. In addition, the circuits can be easily analyzed with circuit simulation software such as SPICE.

Electroacoustic models are developed for the more common microphone types and for the moving-coil loudspeaker driver. Separate chapters cover closed-box and vented-box loudspeaker systems. Although the emphasis is on basic system theory, practical methods of design are also presented. Because crossover networks are such an important part of loudspeaker systems, a chapter is devoted to crossover networks. Acoustic horns are a vital component in public address systems. A chapter is devoted to horn models. In all cases, SPICE simulation examples are presented where appropriate.

One might ask why a chapter on audio amplifiers is included in a book that is primarily concerned with electroacoustics. Without a power amplifier, a loudspeaker could not make sound. Therefore, one might say that the role of an amplifier in a system is just as important as the role of a loudspeaker. The chapter on amplifiers is not intended to be an in-depth chapter on electronic theory. Instead, it addresses the more important aspects of amplifier design with an emphasis on the basic operation of the circuits. Practical examples are presented that illustrate how some of the pitfalls of amplifier design can be avoided.

The second edition corrects errors found by students and myself in the first edition. Also, six appendices have been added.

W. Marshall Leach, Jr.
April 1999