Illustrated Dictionary of Parasitology in the Post-genomic Era

https://doi.org/10.21775/9781910190678

Edited by

Hany M. Elsheikha

School of Veterinary Medicine and Science
Faculty of Medicine and Health Sciences
University of Nottingham
Nottingham
UK
hany.elsheikha@nottingham.ac.uk

Edward L. Jarroll

Department of Biological Sciences
Lehman College
City University of New York
New York, NY
USA
edward.jarroll@lehman.cuny.edu

Caister Academic Press
Contents

Preface v
Photo Credits vii
Illustrated Dictionary of Parasitology in the Post-genomic Era 1
Appendix 1 Abbreviations and Acronyms Used in Parasitology 307
Appendix 2 Common Names of Parasites 313
Appendix 3 Word Roots in Parasitology and Biology 317
Appendix 4 The Greek Alphabet 325
Appendix 5 Parasitology and Related Journals 327
Appendix 6 Important Organizations and Databases 329
Appendix 7 Additional Readings 331
Current Books of Interest

Bacterial Evasion of the Host Immune System 2017
Next-generation Sequencing and Bioinformatics for Plant Science 2017
The CRISPR/Cas System: Emerging Technology and Application 2017
Brewing Microbiology: Current Research, Omics and Microbial Ecology 2017
Metagenomics: Current Advances and Emerging Concepts 2017
*Bacillus*: Cellular and Molecular Biology (Third Edition) 2017
Cyanobacteria: Omics and Manipulation 2017
Foot-and-Mouth Disease Virus: Current Research and Emerging Trends 2017
Brain-eating Amoeba: Biology and Pathogenesis of Naegleria fowleri 2016
*Staphylococcus*: Genetics and Physiology 2016
Chloroplasts: Current Research and Future Trends 2016
Microbial Biodegradation: From Omics to Function and Application 2016
Influenza: Current Research 2016
MALDI-TOF Mass Spectrometry in Microbiology 2016
*Aspergillus and Penicillium* in the Post-genomic Era 2016
The Bacteriocins: Current Knowledge and Future Prospects 2016
Omics in Plant Disease Resistance 2016
Acidophiles: Life in Extremely Acidic Environments 2016
Climate Change and Microbial Ecology: Current Research and Future Trends 2016
Biofilms in Bioremediation: Current Research and Emerging Technologies 2016
Microalgae: Current Research and Applications 2016
Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives 2016
Virus Evolution: Current Research and Future Directions 2016
Arboviruses: Molecular Biology, Evolution and Control 2016
*Shigella*: Molecular and Cellular Biology 2016
Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment 2016
Alphaviruses: Current Biology 2016
Thermophilic Microorganisms 2015
Flow Cytometry in Microbiology: Technology and Applications 2015
Probiotics and Prebiotics: Current Research and Future Trends 2015
Epigenetics: Current Research and Emerging Trends 2015
*Corynebacterium glutamicum*: From Systems Biology to Biotechnological Applications 2015
Advanced Vaccine Research Methods for the Decade of Vaccines 2015
Antifungals: From Genomics to Resistance and the Development of Novel Agents 2015

Full details at www.caister.com
The number of infectious diseases in the world today seems to be increasing rather than decreasing as one would hope, especially new and emerging viral diseases that either did not exist previously or were not recognized. Despite this, malaria, a parasitic disease caused by *Plasmodium* spp., remains the number one infectious disease worldwide. Almost 12 years have elapsed since the *Dictionary of Parasitology* by Peter J Gosling was published, more than a decade marked by extensive discoveries and developments related to the field of parasitology. The dramatic shift from a parasite-focused subject to a field in which the emphasis is on the interaction between the parasite and its host organism has led to major breakthroughs in understanding the pathobiology of many parasites at a more in-depth level. More exciting is the discovery of the mechanisms by which some helminthic parasites modulate host immune response and their applications in medicine to cure chronic diseases, which are now being translated into therapies that are not only symptomatic but also potentially disease modifying. These research advances have stimulated a broader interest in parasitology among many researchers in other fields, such as medicine and bioscience. Historically, parasitologists have maintained a unique parasite nomenclature (e.g. *Dictyocaulus, Dracunculus, Leishmania, Angiostrongylus*) and terminology (e.g. hypobiosis, vector, xenodiagnosis) that has often puzzled their colleagues in other fields, causing them to associate parasitology to a black box. In the meantime, like most scientific disciplines, parasitology has become more cross-disciplinary with fast-growing vocabularies, which are new to parasitologists. Therefore, it is necessary to develop a new dictionary to help both parasitologists and non-parasitologists to grasp the contemporary concepts and terms used in modern parasitology and associated scientific areas.

The first edition of the *Illustrated Dictionary of Parasitology in the Post-genomic Era* comes at a time when the topic of ‘one health’ and its medical, veterinary and environmental impacts are at the forefront of news stories and political discussions. Successful implementation of the ‘one health’ initiative requires cross-fertilization between different disciplines, which will improve our understanding of the mechanisms underlying host–pathogen dynamic interactions. With over 4500 entries, illustrated with more than 170 images and line drawings, and reflecting ground-breaking advances in parasitology research this dictionary provides, in a single-volume, up-to-date resources for the many terms encountered in contemporary parasitological literature. The dictionary also covers many pertinent terms from related fields of veterinary medicine and life sciences, such as microbiology, genetics, biochemistry, biotechnology, infectious diseases, epidemiology, zoonosis, public health, molecular biology, zoology, pharmaceutical science, environmental science, taxonomy, and population genetics.

This dictionary will serve as a guide for students, academic staff, medical and veterinary professionals, and life scientists, as well as for members of industrial establishments,
governmental agencies and research foundations involved in research activities relating to parasitology and associated scientific fields. Finally, this book could not have been delivered in such a professional way without the help of the professional staff of Caister Academic Press and Prepress Projects Ltd. Their help is deeply appreciated.

Hany M. Elsheikha
School of Veterinary Medicine and Science
Faculty of Medicine and Health Sciences
University of Nottingham
Nottingham
UK

Edward L. Jarroll
Department of Biological Sciences
Lehman College
City University of New York
New York, NY
USA
Photo Credits


- amoebic liver abscess, babesiosis, balantidiasis, Bancroftian filariasis, bed bugs, Chagas disease, clonorchiasis, coccidia, copulatory bursa, cryptosporidiosis, crypts, cutaneous leishmaniasis, cyclophyllidea, cyclozoonosis, cysticeroid, egg capsule, egg membrane, Enterobius vermicularis, erythrocytic asexual-stage schizonts, gametocyte, hepatosplenic schistosomiasis, inner shell, Kato–Katz method, lymphatic filariasis, metacystic promastigotes, midges, miracidia hatching, nurse cell, Onchocerca cervicalis, Onchocerca ochengi, operculum, polar plugs, proglottid, promastigote, protoscolex, pulicide, rostellum, salvianum, scolex, soil-transmitted helminths, sporocyst, strongyloidiasis, sucking disk, taeniasis, toxocariasis, triatomid bug, Trichinella spiralis, Trichuris trichura, trypomastigote, tsetse fly, urinary schistosomiasis, vacuole, xenodiagnosis.


- Anoplocephala perfoliata, bottle jaw, bursa, cestodes, cyst, Haematobia irritans, haematophagous, hard ticks, hexacanth embryo, hydatid cyst, hydatid sand, paramphistome, psoroptic mange, pyriform apparatus, strobilation, thelaziosis, tick pyaemia of sheep, whipworms.

Courtesy: Veterinary Business Development Ltd.

- acetabulum, blowfly, Branchiura, Ctenocephalides felis, ciliata, Crustacea, insect pupa, leishmaniasis, macronucleus, myiasis, nemathelminthes, puparium, Varroa, zoonosis.

Courtesy: Bristol University tick ID online resource with the kind permission of Professor Richard Wall.

- Dermacentor reticulatus, Ixodes ricinus, Rhipicephalus sanguineus.

Courtesy: Bayer Animal health.

- angiostrongylosis, aelurostrongylosis.

Courtesy: Dr. JP Dubey, USDA, Beltsville, Maryland, USA.

- bradyzoite.

Courtesy: Emma Drinkall, University of Nottingham, Nottingham, UK.

- life cycle, Ligula intestinalis.

Courtesy: Vito Colella, University of Bari, Bari, Italy.

- erratic parasite.
This illustrated dictionary provides concise definitions and explanations of parasitology terms and related molecular processes presented in an easy-to-use, A-Z order with particular emphasis on terms that are of relevance to parasite biotechnology and molecular biology. With over 4500 entries and more than 170 figures this volume reflects recent, ground-breaking advances in parasitology research. The authors have provided, in a single-volume, an up-to-date glossary of the terminology encountered in contemporary parasitology literature.
Systematic Parasitology publishes fully illustrated research papers, brief communications, and fully illustrated major revisions. In order to maintain high standards, all contributors describing new taxa are asked to state clearly where the holotype is deposited and to make paratypes available for examination by the referees. It is recognized that, in some cases, this may cause problems for the authors, but it is hoped that by adhering to this rule authors may be protected against rapid synonymy of their taxa, and the types will be preserved for posterity. 100% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again. Journal information. Editor-in-Chief.