Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII

James G. Fujimoto
Joseph A. Izatt
Editors

3–6 February 2019
San Francisco, California, United States

Sponsored by
SPIE

Cosponsored by
Wasatch Photonics (United States)

Published by
SPIE

Volume 10867
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 1605-7422
ISSN: 2410-9045 (electronic)
ISBN: 9781510623767

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time): Fax +1 360 647 1445
SPIE.org
Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 1605-7422/19/$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

<table>
<thead>
<tr>
<th>Authors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Committee</td>
<td>vii</td>
</tr>
</tbody>
</table>

ADVANCES IN TECHNOLOGY I

| 10867 04 | Enhanced depth penetration by dual-axis optical coherence tomography [10867-3] |
| 10867 06 | Tunable 1060nm VCSEL co-packaged with pump and SOA for OCT and LiDAR [10867-5] |

FUNCTIONAL OCT

| 10867 0D | Measuring tissue dispersion using the cross-correlation of half-spectrum optical coherence tomography images [10867-12] |

OPHTHALMOLOGY I

| 10867 0F | 3D cellular imaging of the cornea with Gabor-domain optical coherence microscopy [10867-14] |

OCM AND FULL FIELD

| 10867 0U | Line-field confocal optical coherence tomography [10867-29] |

ADVANCES IN TECHNOLOGY II

| 10867 14 | Development of real-time multimodal OCT with manual operation capabilities and emergence of its applications in clinical practice [10867-39] |

IMAGE AND SIGNAL PROCESSING

| 10867 1M | Deep-learning based automated instrument tracking and adaptive-sampling of intraoperative OCT for video-rate volumetric imaging of ophthalmic surgical maneuvers [10867-57] |
Automated layer segmentation of bladder OCT images for enhanced detection of transitional cell carcinoma [10867-60]

Motion artifact removal of optical coherence tomography angiography based on tensor voting [10867-62]

NEUROSCIENCE

In utero optical coherence tomography reveals changes in murine embryonic brain vasculature after prenatal cannabinoid exposure [10867-68]

ELASTOGRAPHY

Optical coherence elastography reveals the changes in cardiac tissue biomechanical properties after myocardial infarction in a mouse model [10867-82]

Thermo-elastic optical coherence tomography [10867-83]

POSTERS I: OCT TECHNOLOGY

Optic axis determination in SU(2) Jones formalism [10867-86]

Complex fast phase unwrapping method for Doppler OCT [10867-87]

Volumetric absolute blood flow measurement with fully connected vasculature network using Doppler optical coherence tomography [10867-89]

OCT spectrometer calibration using B-scan Doppler shift [10867-90]

Application of Bessel beam from deep seated negative axicon in optical coherence tomography of tissue structure [10867-94]

Upper limit for angular compounding speckle reduction [10867-95]

Long axial range swept-source OCT instrument enhanced by complex master-slave processing [10867-100]

Normalized field autocorrelation function-based optical coherence tomography 3D angiography [10867-101]

Employing the phase in master slave interferometry [10867-102]

High resolution line-field SD-OCT with 2.5kHz frame rate for cellular resolution imaging of biological tissue [10867-104]
10867 2Y	Swept wavelength semiconductor laser of the red spectral range [10867-105]
10867 2Z	Temperature stabilized phase reference for MEMS based swept sources [10867-106]
10867 31	Evaluation of a commercial-grade camera for line field spectral-domain optical coherence tomography [10867-108]

POSTERS II: IMAGE PROCESSING

| 10867 33 | Ghosting artifact reduction of polarization sensitive optical coherence tomography images through wavelet-FFT filtering [10867-111] |
| 10867 34 | Shadow rendering for improved volumetric visualization in real time 4D-OCT [10867-113] |

POSTERS II: CLINICAL AND RESEARCH APPLICATIONS

10867 3E	Optimization of a SS-OCT with a focus tunable lens for enhanced visualization of ocular opacities [10867-119]
10867 3F	Multimodal optical imaging as breast cancer margins assessment methods [10867-121]
10867 3G	Automatic identification of metastatic lymph nodes in OCT images [10867-123]
10867 3H	Polarization-sensitive swept-source optical coherence tomography for investigating depth, birefringence, depolarization and orientation of collagen structure of human cervix tissue [10867-124]
10867 3M	3D high-resolution subsurface fingerprint imaging using superresolution optical coherence tomography [10867-129]
10867 3S	Index of refraction estimation using dual-angle optical coherence tomography [10867-135]
The quantitative analysis of spectral domain optical coherence tomography was researched to acquiring interior information of biological tissues. The single-scattering model, confocal single-scattering model and multiple-scattering model were presented and discussed. An average A-scan algorithm and a nonlinear curve-fitting method were employed to explore the scattering features of Intralipid TM. Experiments show that the relation of scattering coefficients and concentrations is linear in concentrations from 1% to 10% of Intralipid TM. Furthermore, it confirm that the