INTRODUCTION TO FOURIER ANALYSIS

NORMAN MORRISON

SUMMARY

Comprehensive, user friendly, and pedagogically structured

A fast, easy way to learn about the electrical engineer's most important mathematical tool

Based on a groundbreaking one-semester course originated by Professor Norman Morrison at the University of Cape Town, this book serves equally well as a course text and a self-study guide for professionals. Offering only relevant mathematics, it covers all the core principles of electrical engineering contained in Fourier analysis, including the time and frequency domains; the representation of waveforms in terms of complex exponentials and sinusoids; complex exponentials and sinusoids as the eigenfunctions of linear systems; convolution; impulse response and the frequency transfer function; magnitude and phase spectra; and modulation and demodulation.

* Covers Fourier analysis exclusively for electrical engineering students and professionals
* Offers a complete FFT system (contained on the enclosed disks long for IBM compatibles, the other for Macintosh)
* Includes dozens of examples drawn from electrical engineering
* Packed with exercises, samples, and end-of-chapter problem sets

CONTENTS

Preface xiii
Acknowledgments xviii
Nomenclature and Abbreviations xix

PART 1 CONTINUOUS FOURIER ANALYSIS

1 Background

1.1 Types of Problems 3
1.2 Historical Background 4

2 Fourier Series for Periodic Functions 9

2.1 Orthogonality of Vectors and Functions 9
2.2 The Complex Exponentials 10
2.3 Properties of the Complex Fourier Coefficients 21
2.4 Parseval's Theorem for Periodic Waveforms 32
2.5 Convergence of Fourier Series 37
Notes and Comments 44
Exercises 45

3 The Fourier Integral 62

3.1 Introduction 62
3.2 The Fourier Integral 62
3.3 What Does the Fourier Integral Mean? 68
3.4 Two Basic Theorems 73
3.5 Parseval's Theorem for Pulses 78
3.6 Existence of the Fourier Integral 83
3.7 Asymptotic Bounds for F(ω) 86
Exercises

4 Fourier Transforms of Some Important Functions

- **4.1 Introduction**
- **4.2 The Rectangular Pulse**
- **4.3 The Single-Sided Decaying Exponential**
- **4.4 The Double-Sided Decaying Exponential**
- **4.5 The Signum Function**
- **4.6 The Dirac Delta or Unit Impulse**
- **4.7 The Unit Step**
- **4.8 The Eternal Complex Exponential**
- **4.9 The Eternal Cosine and Sine Functions**
- **4.10 Periodic Functions**
- **4.11 The Periodic Impulse Train**

Exercises

5 The Method of Successive Differentiation

- **5.1 The Differentiation Property**
- **5.2 Differentiating Functions with Discontinuities**
- **5.3 The Method of Successive Differentiation**
- **5.4 One Small Complication and How to Resolve It**
- **5.5 Non-polynomial Sections**

Exercises

6 Frequency-Domain Analysis

- **6.1 Introduction**
- **6.2 Response of a Linear Time-Invariant System to a Pulse Function**
- **6.3 AC Circuit Analysis Using the Fourier Transform**
- **6.4 Response of a Network to a Periodic Function**
- **6.5 Finding the Transfer Function for Pulses**

Exercises

7 Time-Domain Analysis

- **7.1 Introduction**
- **7.2 The Impulse Response**
- **7.3 Convolution**
- **7.4 What Does the Convolution Product Mean?**
- **7.5 Convolution the Graphical Way**
- **7.6 Evaluating the Convolution Integral Analytically**
- **7.7 Convolution in the Frequency Domain**

Exercises

8 The Properties

- **8.1 The Linearity Property**
- **8.2 The Realness Property**
- **8.3 The Symmetry Properties**
- **8.4 The Area Property**
- **8.5 The Duality Property**
- **8.6 The Reciprocal-scaling Property**
- **8.7 The Time-shift Property**
- **8.8 The Frequency-shift Property**
- **8.9 Time-domain Differentiation**
- **8.10 Frequency-domain Differentiation**
- **8.11 Time-domain Convolution**
- **8.12 Frequency-domain Convolution**
- **8.13 Two Properties of the Dirac Delta**
- **8.14 The Integration Property**

Exercises

9 The Sampling Theorems

- **9.1 Introduction**
- **9.2 Time-domain Impulse Sampling**
- **9.3 Time-domain Analysis of the Recovery Process**
- **9.4 Sampling with Pulses Other than Dirac Deltas**
- **9.5 Sampling in the Frequency Domain**

Exercises
PART 2 DISCRETE FOURIER ANALYSIS

10 The Discrete Fourier Transform

10.1 Introduction
10.2 The Discrete Complex Exponentials
10.3 The Discrete Fourier Transform
10.4 Properties of the DFT
Notes and Comments
Exercises

11 Inside The Fast Fourier Transform

11.1 Introduction
11.2 The FFT for Small Values of N
11.3 The General Radix-2 FFT Algorithm
11.4 Setting Up the Rules
11.5 The Complete FFT Flowchart
11.6 The Cooley-Tukey Derivation of the Radix-2 Algorithm
11.7 Final Comments

12 The Discrete Fourier Transform as an Estimator

12.1 Introduction
12.2 Relationships Based on the Rectangular Rule
12.3 Aliasing
12.4 The FFT as an Estimator for the CFTs
12.5 Inverting CFT Spectra Using the FFT
Exercises

13 The Errors in Fast Fourier Transform Estimation

13.1 Introduction
13.2 The Errors in the Estimates
13.3 Canonical Pulses and Order of Continuity
13.4 The Error Expressions
13.5 Some Properties of \(E_N(n) \)
13.6 The Log-Linear Z-curves
13.7 Asymptotic Behavior of Noncanonical Functions
13.8 Break Points not at a Sampling Instant
13.9 Error Correction of FFT Estimates
13.10 Confirmation of Theoretical Results
13.11 Zero Padding Increases the Estimation Errors
Exercises

14 The Four Kinds of Convolution

14.1 Introduction
14.2 The Four Kinds of Convolution
14.3 The Span Restriction
14.4 Discrete Circular Convolution on the FFT
14.5 Discrete Linear Convolution Using the FFT
14.6 Continuous Linear Convolution Using the FFT
14.7 Continuous Circular Convolution Using the FFT
14.8 Operation Count to Perform Convolution
Exercises

15 Emulating Dirac Deltas and Differentiation on the Fast Fourier Transform

15.1 Time-domain Dirac Deltas on the FFT
15.2 Frequency-domain Dirac Deltas on the FFT
15.3 Differentiation on the FFT
Exercises

PART 3 THE USER'S MANUAL FOR THE ACCOMPANYING DISKS

Chapters 16 and 17 (Located in README files on the disks)

(A) Macintosh Disk
(B) DOS Disk
Appendix 1 References and Further Reading
Appendix 2

A. Three Short Tables of Fourier Transforms 488
B. The Properties 491

Answers to the Exercises 493

Index 555

TOP
Finally, after all of these abstract and general considerations, we apply the Fourier transform to the solution of some equations. 3.4.1 Green’s Function for ODE. Suppose we are asked to solve the equation.